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Abstract

Image captioning as a multimodal task has drawn much in-
terest in recent years. However, evaluation for this task re-
mains a challenging problem. Existing evaluation metrics fo-
cus on surface similarity between a candidate caption and
a set of reference captions, and do not check the actual re-
lation between a caption and the underlying visual content.
We introduce a new diagnostic evaluation framework for the
task of image captioning, with the goal of directly assessing
models for grammaticality, truthfulness and diversity (GTD)
of generated captions. We demonstrate the potential of our
evaluation framework by evaluating existing image caption-
ing models on a wide ranging set of synthetic datasets that
we construct for diagnostic evaluation. We empirically show
how the GTD evaluation framework, in combination with di-
agnostic datasets, can provide insights into model capabilities
and limitations to supplement standard evaluations.

Introduction
Automatically generating text to describe the content of
images, also known as image captioning, is a multimodal
task of considerable interest in both the computer vision
and the NLP communities. Image captioning can be framed
as a translation task from an image to a descriptive nat-
ural language statement. Many existing captioning models
(Vinyals et al. 2015; Donahue et al. 2015; Yao et al. 2017;
Aneja, Deshpande, and Schwing 2018) follow the typical
encoder-decoder framework where a convolutional network
is used to condense images into visual feature representa-
tions, combined with a recurrent network for language gen-
eration. While these models demonstrate promising results,
quantifying image captioning performance remains a chal-
lenging problem, in a similar way to other generative tasks
(Radev et al. 2003; Gatt and Krahmer 2018).

Evaluating candidate captions for human preference is slow
and laborious. To alleviate this problem, many automatic
evaluation metrics have been proposed, such as BLEU (Pa-
pineni et al. 2002), METEOR (Banerjee and Lavie 2005),
ROUGE (Lin 2004) and CIDEr (Vedantam, Lawrence Zit-
nick, and Parikh 2015). These n-gram-based metrics eval-
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Caption 1: A circle is above a green
rectangle.
Caption 2: A blue triangle is to the
left of a semicircle.
Caption 3: A semicircle is below a
gray triangle.
Caption 4: A semicircle is to the left
of a triangle.

Figure 1: ShapeWorld example: spatial statements in the
context of multiple shapes. The first three statements are
truthful and diverse descriptions of the image. The fourth
statement is wrong, but nonetheless exhibits a high degree
of n-gram overlap with the true reference captions.

uate captioning performance based on surface similarity
between a candidate caption and reference statements. A
more recent evaluation metric for image captioning is SPICE
(Anderson et al. 2016), which takes into account seman-
tic propositional content of generated captions by scoring
a caption based upon a graph-based semantic representation
transformed from reference captions.

The rationale behind these evaluation metrics is that human
reference captions serve as an approximate target and com-
paring model outputs to this target is a proxy for how well
a system performs. Thus, a candidate caption is not directly
evaluated with respect to image content, but compared to a
set of human statements about that image.

However, in image captioning, visual scenes with multiple
objects and relations correspond to a diversity of valid de-
scriptions. Consider the example image and captions from
the ShapeWorld framework (Kuhnle and Copestake 2017)
shown in Figure 1. The first three captions are true state-
ments about the image and express relevant ideas, but de-
scribe different objects, attributes and spatial relationships,
while the fourth caption is wrong despite referring to the
same objects as in the third caption. This casts doubt on the
sufficiency of using a set of reference captions to approxi-
mate the content of an image. We argue that, while existing
metrics have undeniably been useful for real-world caption-
ing evaluation, their focus on approximate surface compari-



son limits deeper insights into the learning process and even-
tual behavior of captioning models.

To address this problem, we propose a set of principled eval-
uation criteria which evaluate image captioning models for
grammaticality, truthfulness and diversity (GTD). These cri-
teria correspond to necessary requirements for image cap-
tioning systems: (a) that the output is grammatical, (b) that
the output statement is true with respect to the image, and (c)
that outputs are diverse and mirror the variability of training
captions.

Practical evaluation of GTD is currently only possible on
synthetic data. We construct a range of datasets designed for
image captioning evaluation. We call this diagnostic eval-
uation benchmark ShapeWorldICE (ShapeWorld for Image
Captioning Evaluation). We illustrate the evaluation of spe-
cific image captioning models on ShapeWorldICE. We em-
pirically demonstrate that the existing metrics BLEU and
SPICE do not capture true caption-image agreement in all
scenarios, while the GTD framework allows a fine-grained
investigation of how well existing models cope with varied
visual situations and linguistic constructions.

We believe that as a supplementary evaluation method to
real-world metrics, the GTD framework provides evaluation
insights that are sufficiently interesting to motivate future
work.

Related work
Existing evaluation of image captioning
As a natural language generation task, image captioning fre-
quently uses evaluation metrics such as BLEU (Papineni et
al. 2002), METEOR (Banerjee and Lavie 2005), ROUGE
(Lin 2004) and CIDEr (Vedantam, Lawrence Zitnick, and
Parikh 2015). These metrics use n-gram similarity between
the candidate caption and reference captions to approximate
the correlation between a candidate caption and the associ-
ated ground truth. SPICE (Anderson et al. 2016) is a more
recent metric specifically designed for image captioning. For
SPICE, both the candidate caption and reference captions
are parsed to scene graphs, and the agreement between tu-
ples extracted from these scene graphs is examined. SPICE
more closely relates to our truthfulness evaluation than the
other metrics, but it still uses overlap comparison to refer-
ence captions as a proxy to ground truth. In contrast, our
truthfulness metric directly evaluates a candidate caption
against a model of the actual visual content.

Many researchers have pointed out problems with exist-
ing reference-based metrics including low correlations with
human judgment (Elliott and Keller 2014; Anderson et al.
2016; Kilickaya et al. 2017) and strong baselines using
nearest-neighbor methods (Devlin et al. 2015b) or relying
solely on object detection (Wang, Madhyastha, and Specia
2018). Fundamental concerns have been raised with respect
to BLEU, including variability in parameterization and pre-
cise score calculation leading to significantly different re-
sults (Post 2018). Its validity as a metric for tasks other than
machine translation has been questioned (Reiter 2018), par-

ticularly for tasks for which the output content is not nar-
rowly constrained, like dialogue (Liu et al. 2016).

Some recent work focuses on increasing the diversity of gen-
erated captions, for which various measures are proposed.
Devlin et al. (Devlin et al. 2015a) explored the concept of
caption diversity by evaluating performance on composi-
tionally novel images. van Miltenburg et al (van Miltenburg,
Elliott, and Vossen 2018) framed image captioning as a word
recall task and proposed several metrics, predominantly fo-
cusing on diversity at the word level. However, this direction
is still relatively new and lacks standardized benchmarks and
metrics.

Synthetic datasets
Recently, many synthetic datasets have been proposed as di-
agnostic tools for deep learning models, such as CLEVR
(Johnson et al. 2017) for visual question answering (VQA),
the bAbI tasks (Weston et al. 2015) for text understand-
ing and reasoning, and ShapeWorld (Kuhnle and Copestake
2017) for visually grounded language understanding. The
primary motivation is to reduce complexity which is con-
sidered irrelevant to the evaluation focus, to enable better
control over the data, and to provide more detailed insights
into strengths and limitations of existing models.

In this work, we develop the evaluation datasets within the
ShapeWorld framework. ShapeWorld is a controlled data
generation framework consisting of abstract colored shapes
(see Figure 1 for an example). We use ShapeWorld to gen-
erate training and evaluation data for two major reasons.
ShapeWorld supports customized data generation accord-
ing to user specification, which enables a variety of model
inspections in terms of language construction, visual com-
plexity and reasoning ability. Another benefit is that each
training and test instance generated in ShapeWorld is re-
turned as a triplet of <image, caption, world model>. The
world model stores information about the underlying mi-
croworld used to generate an image and a descriptive cap-
tion, internally represented as a list of entities with their at-
tributes, such as shape, color, position. During data genera-
tion, ShapeWorld randomly samples a world model from a
set of available entities and attributes. The generated world
model is then used to realize a corresponding instance con-
sisting of image and caption. The world model gives the ac-
tual semantic information contained in an image, which al-
lows evaluation of caption truthfulness.

GTD Evaluation Framework
In the following we introduce GTD in more detail, consider
it as an evaluation protocol covering necessary aspects of the
multifaceted captioning task, rather than a specific metric.

Grammaticality
An essential criterion for an image captioning model is that
the captions generated are grammatically well-formed. Fully
accurate assessment of grammaticality in a general context
is itself a difficult task, but becomes more feasible in a
very constrained context like our diagnostic language data.



Type Variant Caption Image

Existential

OneShape
There is a green cross.
A rectangle is green.

There is a cyan shape.

MultiShapes
A shape is a gray triangle.

There is a square.
There is a yellow shape.

Spatial

TwoShapes
A square is above a red pentagon.

A yellow square is above a yellow pentagon.
A square is to the left of a pentagon.

MultiShapes
A blue triangle is to the left of a semicircle.

A circle is above a green rectangle.
A semicircle is to the left of a circle.

Quantification

Count
Exactly two rectangles are green.

Exactly one shape is a yellow circle.
Exactly zero shapes are ellipses.

Ratio
A quarter of the shapes are rectangles.
A third of the rectangles are magenta.

Half the shapes are green.

Table 1: Sample captions and images from ShapeWorldICE datasets (truthful captions in blue, false in red). Images from
Existential-OneShape only contain one object, while images from Spatial-TwoShapes contain two objects. Im-
ages from the other four datasets follow the same distribution with multiple abstract objects present in a visual scene.

We take parseability with the English Resource Grammar
(Flickinger 2000, ERG) as a surrogate for grammaticality,
meaning that a sentence is considered grammatically well-
formed if we obtain a parse using the ERG.

The ERG is a broad-coverage grammar based on the head-
driven phrase structure grammar (HPSG) framework. It is
linguistically precise: sentences only parse if they are valid
according to its hand-built rules. It is designed to be general-
purpose: verified coverage is around 80% for Wikipedia, and
over 90% for corpora with shorter sentences and more lim-
ited vocabulary (for details see Flickinger (2011)). Since the
ShapeWorld training data – the only language source for
models to learn from – is generated using the same gram-
mar, the ERG has∼100% coverage of grammaticality in the
model output space.

Truthfulness
The second aspect we investigate is truthfulness, that is,
whether a candidate caption is compatible with the content
of the image it is supposed to describe. We evaluate caption
truthfulness on the basis of a linguistically-motivated ap-
proach using formal semantics. We convert the output of the
ERG parse for a grammatical caption to a Dependency Mini-
mal Recursion Semantics (DMRS) graph using the pydmrs
tool (Copestake et al. 2016). Each converted DMRS is a
logical semantic graph representation corresponding to the
caption. We construct a logical proposition from the DMRS
graph, and evaluate it against the actual world model of the
corresponding image. A caption can be said to agree with an
image only if the proposition evaluates as true on the basis
of the world model. By examining the logical agreement be-
tween a caption representation and a world model, we can
check whether the semantics of this caption agrees with the

visual content which the world model represents. Thus we
do not rely on a set of captions as a surrogate for the con-
tent of an image, but instead leverage the fact that we have
the ground truth, thus enabling the evaluation of true image-
caption agreement.

Diversity
While grammaticality and truthfulness are essential require-
ments for image captions, these criteria alone can easily be
“gamed” by specializing on a small set of generic state-
ments which are true most of the time. In the context of ab-
stract shapes, such captions include examples like “There is
a shape” or “At least zero shapes are blue” (which is tech-
nically true even if there is no blue shape). This motivates
the third fundamental requirement of captioning output to
be diverse.

As ShapeWorldICE exploits a limited size of open-class
words, we emphasize the diversity in ShapeWorldICE at the
sentence level rather than the word level. Since the ground-
truth reference captions in ShapeWorld are randomly sam-
pled, we take the sampled captions accompanying the test
images as a proxy for optimal caption diversity, and com-
pare it with the empirical output diversity of the evaluated
model on these test images. Practically, we look at language
constructions used and compute the corresponding diversity
score as the ratio of observed number versus optimal num-
ber:

diversity =
#{model-generated}

#{ShapeWorld-generated}
Language constructions here correspond to reduced caption
representations which only record whether an object is de-
scribed by shape (e.g., “square”), color (e.g., “red shape”)
or color-shape combination (e.g., “red square”). So the



statement “A square is red” and “A circle is blue” are con-
sidered the same, while “A shape is red” is different.

Figure 2: Performance comparison of the
Show&Tell model and the LRCN1u model on
Existential-MultiShapes. SnT represents the
Show&Tell model while LRCN represents the LRCN1u
model. Grammaticality, Truthfulness and Diversity refer
to the grammaticality ratio, the truthfulness ratio and the
diversity ratio of generated captions, respectively.

Experimental Setup
Datasets
We develop a variety of ShapeWorldICE datasets, with a
similar idea to the “skill tasks” in the bAbI framework (We-
ston et al. 2015). Table 1 gives an overview for different
ShapeWorldICE datasets we use in this paper. We consider
three different types of captioning tasks, each of which fo-
cuses on a distinct aspect of reasoning abilities. Existential
descriptions examine whether a certain object is present in
an image. Spatial descriptions identify spatial relationships
among visual objects. Quantification descriptions involve
count-based and ratio-based statements, with an explicit fo-
cus on inspecting models for their counting ability. We de-
velop two variants for each type of dataset to enable different
levels of visual complexity or specific aspects of the same
reasoning type. All the training and test captions sampled in
this work are in English.

Each dataset variant consists of around 200k training in-
stances and 4,096 validation instances, plus 4,096 test in-
stances. Each training instance consists of an image and a
reference caption. At test time, only the test images are avail-
able to the evaluated models. Underlying world models are
kept from the models and are used for later GTD evaluation.
For each test instance, we sample ten reference captions of
the same distribution as the training captions to enable the
comparison of our proposed metrics to BLEU and SPICE.
We fine-tune our model hyperparameters based on the per-
formance on the validation set. All reported results are mea-
sured on the test split with the parameters yielding the best
validation performance.

Models
We experiment with two image captioning models: the
Show&Tell model (Vinyals et al. 2015) and the LRCN1u
model (Donahue et al. 2015). Both models follow the ba-
sic encoder-decoder architecture design that uses a CNN
encoder to condense the visual information into an image
embedding, which in turn conditions an LSTM decoder to
generate a natural language caption. The main difference
between the two models is the way they condition the de-
coder. The Show&Tell model feeds the image embedding
as the “predecessor word embedding” to the first produced
word, while the LRCN1u model concatenates the image fea-
tures with the embedded previous word as the input to the
sequence model at each time step.

We follow the common practice in image captioning to use
a CNN component pretrained on object detection and fine-
tune its parameters on the image captioning task. The en-
coder and decoder components are jointly optimized with
respect to the standard cross-entropy sequence loss on the
respective ShapeWorldICE dataset. For all our experiments,
we train models end-to-end for a fixed number of 100k it-
erations with a batch size of 64. We use Adam optimization
(Kingma and Ba 2014) with a learning rate of 0.001. Word
embeddings are randomly initialized and jointly trained dur-
ing the training.

Results
We train and evaluate the Show&Tell and LRCN1u models
on the ShapeWorldICE datasets. Here we discuss in detail
the diagnostic results of these experiments. During training,
we periodically record model output on the test images, to
be able to analyze the development of our evaluation metrics
throughout the process. We also compute BLEU-4 scores
and SPICE scores of generated captions for comparison, us-
ing 10 reference captions per test image.

LRCN1u exhibits clearly superior performance in terms
of truthfulness. We start off by comparing performance of
the Show&Tell model and the LRCN1u model, see Figure 2.
While both models learn to produce grammatical sentences
early on, it can be seen that LRCN1u is clearly superior
in terms of truthfulness, achieving 100% halfway through
training, whereas Show&Tell only slowly reaches around
90% by the end of 100k iterations. This indicates that in-
corporating visual features at every generation step is bene-
ficial for producing true captions. The diversity ratios of cap-
tions generated by two models both increase substantially as
the training progresses, with LRCN1u exhibiting a slightly
greater caption diversity at the end of training.

We observed similar results on other ShapeWorldICE
datasets that we experimented with, validating the superi-
ority of LRCN1u over Show&Tell on ShapeWorldICE. Con-
sequently, we decided to focus on the LRCN1u architecture
in subsequent evaluations, where we report detailed results
with respect to the GTD framework on a variety of datasets.

Correlation between the BLEU/SPICE scores and the
ground truth. From the learning curves shown in Figure



(a) Existential-OneShape (b) Existential-MultiShapes (c) Spatial-MultiShapes

Figure 3: Learning curves for LRCN1u on Existential-OneShape, Existential-MultiShapes and
Spatial-MultiShapes. Truthfulness refers to the ratio of generated captions that are grammatical and agree with ground-
truth world models. BLEU and SPICE denote average BLEU-4 scores and average SPICE scores across the test split, respec-
tively.

3, we find low or no correlation between the BLEU/SPICE
scores and caption truthfulness.

On Existential-OneShape, the BLEU curve follows
the trend of the truthfulness curve in general, indicating that
BLEU is able to capture caption truthfulness well in this
simple scenario. However, while BLEU reports equivalent
model performance on Existential-MultiShapes
and Spatial-MultiShapes, the truthfulness metric
demonstrates very different results. The BLEU score for
generated Existential-MultiShapes captions in-
creases rapidly at the beginning of training and then
plateaus despite the continuous increase in truthfulness ra-
tio. Captions generated on Spatial-MultiShapes at-
tain a relatively high BLEU score from an early stage
of training, but exhibit low agreement (<0.6 truthful-
ness ratio) with ground-truth visual scenes. In the case of
Spatial-MultiShapes, spatial descriptors for two ob-
jects are chosen from a fixed set (“above”, “below”, “to the
left of” and “to the right of”). It is very likely for a generated
spatial descriptor to match one of the descriptors mentioned
in reference captions. In this particular case, the model is apt
to infer a caption which has high n-gram overlaps with ref-
erence captions, resulting in a relatively high BLEU score.
Thus an increased BLEU score does not necessarily indicate
improved performance.

While the truthfulness and BLEU scores in Figure 3a both
increase rapidly early on and then stay stable at a high rate
after training for 20k iterations, the SPICE curve instead
shows a downward trend in the later stage of training. We ex-
amined the output SPICE score for each test instance. SPICE
reports a precision score of 1.0 for most test instances after
20k iterations, which is consistent with the truthfulness and
BLEU scores. However, SPICE forms the reference scene
graph as the union of the scene graphs extracted from in-
dividual reference captions, thus introducing redundancies.
SPICE uses the F1 score of scene graph matching between
the candidate and reference and hence is lowered by imper-
fect recall.

Comparing SPICE curves for three datasets shown in Fig-

ure 3a-3c, they suggest an increase in task complexity, but
they do not reflect the successively closing gap of caption
truthfulness scores between two Existential datasets,
or the substantial difference in caption truthfulness be-
tween captions on Existential-MultiShapes and
Spatial-MultiShapes.

In the remainder of the paper we discuss in detail the di-
agnostic results of the LRCN1u model demonstrated by the
GTD evaluation framework.

Figure 4: Ratio of grammatical sentences produced by
LRCN1u for different ShapeWorldICE datasets in the first
20k training iterations (stays at 100% afterwards).

Perfect grammaticality for all caption types. As shown in
Figure 4, generated captions for all types of ShapeWorldICE
datasets attain quasi-perfect grammaticality scores in fewer
than 5,000 iterations, suggesting that the model quickly
learns to generate grammatically well-formed sentences.

Failure to learn complex spatial relationships. While
CNNs can produce rich visual representations that can
be used for a variety of vision tasks (Sermanet et al.
2013), it remains an open question whether these con-
densed visual representations are rich enough for mul-



Figure 5: Truthfulness ratio of sentences produced by
LRCN1u for different ShapeWorldICE datasets.

timodal tasks that require higher-level abilities of scene
understanding and visual reasoning. From Figure 5, we
can see that while the model performs rather well on
Existential datasets, it exhibits a worse performance
on Spatial data. The caption agreement ratio in the sim-
ple Spatial-TwoShapes scenario is relatively high, but
drops significantly on Spatial-MultiShapes, demon-
strating the deficiencies of the model in learning spatial re-
lationships from complex visual scenes.

The counting task is non-trivial. Counting has long been
considered to be a challenging task in multimodal reasoning
(Antol et al. 2015; Jabri, Joulin, and Van Der Maaten 2016).
To explore how well the LRCN1u model copes with counting
tasks, we generated two Quantification datasets. The
Quant-Count captions describe the number of objects
with certain attributes that appear in an image (e.g. “Exactly
four shapes are crosses”), while the Quant-Ratio cap-
tions describe the ratio of certain objects (e.g. “A third of
the shapes are blue squares”).

From Figure 5, we notice that the LRCN1u model per-
forms poorly on these datasets in terms of truthfulness, re-
flected in the 0.50 and 0.46 scores achieved by the model
on the Quant-Count and Quant-Ratio tasks respec-
tively. The learning curve for Quant-Ratio exhibits a
more gradual rise as the training progresses, suggesting a
greater complexity for the ratio-based task.

Caption diversity benefits from varied language con-
structions in the training data. The diversity ratios of
generated captions for different ShapeWorldICE datasets
are illustrated in Figure 6. We can see that the diver-
sity of inferred captions is largely sensitive to the caption
variability in the dataset itself. For simple datasets (such
as Existential-OneShape) where language construc-
tions in the training set are less diverse, the output captions
tend to have uniform sentence structures. The high diver-
sity ratios of generated Spatial and Quantification
captions suggest that caption diversity benefits from hetero-
geneous language constructions in complex datasets.

Figure 6: Diversity ratio of sentences produced by LRCN1u
on different ShapeWorldICE datasets.

Discussions and Conclusions
Evaluation metrics are required as a proxy for performance
in real applications. As such, they should, as far as possi-
ble, allow measurement of fundamental aspects of the per-
formance of models on tasks. In this work, we propose
the GTD evaluation framework as a supplement to stan-
dard image captioning evaluation which explicitly focuses
on grammaticality, truthfulness and diversity. We developed
the ShapeWorldICE evaluation suite to allow in-depth and
fine-grained inspection of model behaviors. We have empir-
ically verified that GTD captures different aspects of per-
formance to existing metrics by evaluating image caption-
ing models on the ShapeWorldICE suite. We hope that this
framework will shed light on important aspects of model be-
haviour and that this will help guide future research efforts.

While performing the evaluation experiments on the
LRCN1u model, we noticed that caption agreement does
not always improve as the training loss decreases. Ideally,
the training objective should be in accordance with how a
model is eventually evaluated. In future work, we plan to
investigate the feasibility of deliberately encoding the GTD
signal in the training process, for instance, by implement-
ing a GTD-aware loss. We also plan to extend the existing
ShapeWorldICE benchmark to include more linguistic con-
structions (such as relative clauses, compound sentences and
coreference). By doing so, we hope to reveal how well exist-
ing image captioning models cope with complex generation
tasks.
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