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Abstract

AI systems are generally evaluated based on some perfor-
mance metrics like accuracy or Root Mean Squared Error
(RMSE). While using such metrics are meaningful, they do
not fully capture the needed evaluation. As more AI sys-
tems are getting deployed in real-world situations, a variety
of other AI evaluation criteria must be considered. In this pa-
per, we discuss such situations when traditional techniques of
AI evaluation based on static datasets fall short. Specifically,
we discuss effects due to transparency of participant bias, dis-
closure of priorities, choice of metrics that may not be robust
over time, the need to explain results of AI and compare ex-
planations and the need to account for effects due to adaptive
behaviors of humans.

Introduction
Artificial Intelligence (AI) implies a form of data-driven
learning that enables the automation of tasks that require var-
ious levels of human cognition. AI components are increas-
ingly being included in applications that are now poised to
directly affect human life such as autonomous cars, closed-
loop blood glucose control systems, or cardiac diagnostic
systems. Such large scale deployments have seen a com-
mon artifact: a significant gap between expectations from
an AI system and its practical performance. This gap has in-
fluenced human behavior as a result novel use cases have
been seen on the field for which the AI system was not eval-
uated. Such use cases have often led to safety hazards. The
gap in expectation and practical performance always exists
for any automation system regardless of the presence of AI.
However, with the incorporation of AI, this gap has broad-
ened due to many reasons some of which are directly re-
lated to the evaluation methodology of AI systems and are
the main focus of this paper. To highlight these issues, we
consider three practically deployed automation systems that
have some AI components in them:

i) Automated Sign Language Tutor: Learn2Sign (Paudyal
et al. 2019) is a mobile or web-based application that
teaches users American Sign Language (ASL). The appli-
cation shows a video of a chosen ASL sign, the user can

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

review the sign by browsing the video multiple times, the
user can then practice the sign execution by using the web-
cam and recording a video of the execution. An AI engine
matches the practice video with a tutorial video and evalu-
ates the execution as correct or incorrect. ii) Automatic con-
trol of insulin infusion using artificial pancreas (AP): Using
a continuous glucose monitor (CGM) through the wireless
interface the controller tracks the tissue glucose levels every
5 mins. The controller then computes the insulin level to be
infused to the human body to keep the blood glucose level
within a given range. Several types of controllers are used
including PID (FDA 2016), model predictive (Brown et al.
2018), and self-adaptive (Messer et al. 2018) controllers that
learn from CGM excursion history. The controller is semi-
autonomous, where mealtime insulin infusion is manually
announced and managed by the user. iii) Model-driven smart
cardiac monitoring: GeMREM (Nabar et al. 2011) is a car-
diac event monitoring system, that develops an individual-
ized generative model of the human heart by learning the
model parameters from historical data. The model is used to
check current deviation and if no deviation, then no new data
is transmitted and the model itself can be used to regenerate
the signal. However, if any cardiac events result in a change
in beat shape then a new model is automatically learned to
adapt to the new event and create a report of any adversities.
Utilizing these examples, we focus on the following reasons
for the gap in the hype and performance of AI systems.

• Lack of transparency in the evaluation of the AI system:
The overview of evaluation methodology of widely mar-
keted AI systems are publicly available in many different
forms through technical publications, safety approval re-
ports, or manufacturer manuals. However, several impor-
tant details that can potentially explain the gap in reported
and practically observed performance are missed. For ex-
ample, the cohort used for evaluating the performance of
Medtronic 670G system reported their CGM data volun-
tarily and can be expected to be in better adherence with
the protocol. However, the users in a free-living scenario
may not be expected to follow the protocols strictly. There
is no evaluation of the system that checks for nonadher-
ence to different aspects of the protocols and their conse-
quences.



• Marketing of anything AI creates hype which evaluations
do not match: To the common user, usage of the word AI
is often vague and they can be misled to have higher ex-
pectations from the device through improper marketing
strategies. In the case of AP systems, the gap between
marketed performance and observed performance is so
drastic that there are several initiatives such as OpenAPS
(https://openaps.org/), where the common user is encour-
aged to design their own AP. One of the main reasons is
although the Medtronic 670G AP promises to have a high
percentage of time in normoglycemic range, in evalua-
tion the system was configured to reduce immediate life-
threatening effects of hypoglycemia than more commonly
occurring hyperglycemia which has long term effects. The
system is not evaluated for a user who requires more ag-
gressive insulin delivery to control hyperglycemia.

• Evaluation metrics are not human-centric: In the case of
cardiac event detection and monitoring mechanism such
as GeMREM, the evaluation typically involves matching
the generated signal with raw data or counting the number
of critical events detected and matching with manual an-
notations. Metrics such as mean square error or true pos-
itives false positives are typically used. Although these
metrics are perfect for evaluating the performance of the
system, they are not diagnostically relevant. For exam-
ple, a 10% error in heart rate measurement is insignifi-
cant, however, the same error in Q T interval computation
can be crucial in the diagnosis of diseases. For the AP
example, percentage time in hypoglycemia (reported in
Medtronic 670G) may be a great metric to evaluate the
overall performance of the controller, but hypoglycemia
event statistics including the number of events and dura-
tion of each event is not reported and they may be more
relevant for the analysis of serious insulin management
issues. Initial parameters can be learned by mining them
from output traces generated by human usage, thus en-
hancing human-centric solutions (Lamrani, Banerjee, and
Gupta 2018; Gupta, Banerjee, and Lamrani 2019).

• In the ASL tutor (Paudyal et al. 2019), the evaluation is
fundamentally a recognition task, where practice video is
compared with a tutor video. As such F1 score, precision,
recall can be good metrics to evaluate the recognition ca-
pability. However, such numbers have no consequence on
the learning outcomes of the students. A recognition result
of correct or incorrect execution of a sign should also be
accompanied by a description of the reason for the recog-
nition result, and if wrong how to correct the execution.

As such, the gap between the expectation and practical
performance of a system should be explicitly tackled by the
evaluation system. This is significant for optimal user ex-
perience of AI systems, and if not addressed can lead to
novel use cases that are may often have unintended harm
to the user. For example, in the case of AP devices such
as Medtronic 670G, there are reported cases where a user
provides phantom carbs (med 2018) to trick the system
in providing extra bolus insulin input. In other examples, a
misconception regarding autonomy of a car can result in an
inattentive operator leading to potentially fatal consequences

(ube 2019). In this paper, we consider several examples of
AI-enabled systems and evaluate their evaluation to report
best practices (BP) for evaluating AI systems that can poten-
tially address and explain the gap between hype and practi-
cally observed performance of AI systems.

BP1: Transparency on the effects of evaluation
methodologies on participant bias

Participant bias is a common term used in clinical studies
for evaluating the effect of an intervention. This generally
means that the subjects of the clinical study change their be-
havior based on their expectations of the outcomes desired
by the study co-ordinator (Smith and Noble 2014). Although
this effect is not typically considered in the evaluation of AI
systems given the increasing trend of human interaction with
AI components, the effect of an evaluation methodology on
participant bias has to be evaluated.

Participant bias can be of different forms depending on
the evaluation methodology. For example, the evaluation of
an AI system can require the subjects to follow a protocol as
in the case of AP devices. In such a methodology, the partic-
ipant whose CGM data is monitored can be overly attentive
to the details of the protocol. This may result in a use case
that is not often observed in practice and devoid of natural
variations of human users.

Moreover, for systems such as ASL tutors (Paudyal et al.
2019), the evaluation is based on correct recognition of ges-
ture executions when a participant practices. Here partici-
pant bias can act both in favor, the user may be extra attentive
to execute a gesture perfectly, or against the performance of
the system, the user may intentionally provide wrong execu-
tions during the testing phase.

Participant bias can, in fact, be utilized to explain the gap
between expected and practically observed performance.
This is because a biased participant can potentially provide
controlled experiments. The effects of such experiments can
be used as templates in a root cause analysis framework to
explain the failures of the AI system.

BP2: Disclosure of Priorities of Evaluation
Criterias

The first step in evaluating an AI system involves generat-
ing use-cases, functional and non-functional requirements
and the design of experiments. Non-functional requirements
such as safety are typically generated through close collabo-
ration with manufacturers and regulators and often the user
is included either through surveys or through consultation
with domain experts. However, for a complex AI system, a
multitude of safety requirements may be extracted through
a hazard analysis step. For agile and cost effective evalua-
tion of the AI system requirements are typically prioritized.
The typical priorities include immediate safety hazards that
can have fatal consequences. As a result, some of the more
long term safety risks may be ignored. For example, incase
of the Minimed 670G AP approved by Food and Drug Ad-
ministration (FDA), the primary safety requirement was the
avoidance of hypoglycemia. But recent post-market evalua-
tions (Leelarathna and Thabit 2018) show that postprandial-



hyperglycemia is a significant problem for the approved de-
vice which has long term risks of high HbA1C levels (Land-
graf 2004) and potential organ failure (Gerich 2013). Post
prandial hyperglycemia is not discussed in approval docu-
mentation of the Minimed 670G (FDA 2016). A significant
side effect of this drawback is that the Medtronic 670G con-
trollers are designed to be conservative in automated insulin
delivery to avoid hypoglycemia, while the more aggressive
bolus infusions are left for manual interventions from the
user. The problem is errors in such interventions can intro-
duce significant risks of hypo or hyperglycemia which the
controller may not be evaluated to handle.

Priorities in evaluation criteria are typically not explicitly
disclosed to the user and depend on several factors that may
be internal to a AI system manufacturing and business unit.
Priorities are guided by the cost of evaluation, time taken
to perform the evaluation, estimated severity with respect
to safety violations, and many more factors. However, these
priorities determine the gap between what the AI system can
do and what it is evaluated to do.

If such priorities are not disclosed, then a human user
may end up using an AI system under conditions for which
it is not thoroughly evaluated. This may result in unprece-
dented behavior potentially leading to unexpected poor per-
formance. Hence a fundamental requirement for an evalua-
tion method of AI systems has to be disclosure of priorities
for evaluating functional and non-functional requirements.

BP3: Choosing Robust Metrics
AI systems can be evaluated using various metrics like ac-
curacy, mean squared error, precision, and recall. Some of
these metrics like the mean squared error or cross-entropy
are utilized directly to optimize the machine learning com-
ponents of many AI systems. AI engineers have realized
over the years that different types of mistakes can have dif-
ferent costs, so there are also examples of using cost func-
tions that incorporate these by means of penalizing either
the False positives or False negatives more heavily. For ex-
ample, in the case of cardiac event detection or prediction
systems, the mean square error metric specifically is used
quite frequently in works that take a signal processing based
data-driven learning (Gee et al. 2016). However, clinical re-
search (Zigel, Cohen, and Katz 2000) has shown that mean
square error metrics are by no means useful for caregivers or
clinical researchers for the diagnosis of diseases.

Other metrics such as computation time are used as ‘sat-
isficing’ metrics that help engineers select between two oth-
erwise equally performant models. However, these metrics
do not incorporate many other aspects of AI systems such as
interpretability to the end-users or depletion of performance
over time. Various online learning systems can be monitored
and constantly reevaluated over time i.e. as the underlying
environment of operation changes. Current evaluation tech-
niques do not take into account such effects during the ini-
tial evaluation of the systems. This could be remedied by
having evaluation systems that run multiple candidate sys-
tems in shadow mode as the initially chosen model performs
inferences. This will allow a better comparison of how the
performance of the various systems depletes over time. The

other aspect that will be discussed in Section 3 is the inter-
pretability of the system. While it can be agreed that more
interpretability is generally better than less, the amount of
trust we can attribute to interpretations of various classes of
AI techniques has not been evaluated. For instance, different
systems can give varying explanations for the same decision
as has been noted by Wojciech et al (Samek 2019). In ad-
dition, researchers rarely test AI systems according to how
they integrate into the overall decision process. For instance,
in the case of a recommendation system that works together
with various other AI systems to improve the user experi-
ence, the choice of the system itself is made prior to integra-
tion without much regard for possible interactions between
components.

BP4: Evaluation in Terms of Explainable
Concepts

With the rapid advancement in AI and wide range de-
ployment of such systems in human-interfaces applications,
there is a growing need for greater transparency and trust-
worthiness of the systems in the eyes of human-end users.
Increasingly advancements in AI mean the growing com-
plexity of underlying algorithms and the black-box nature of
these systems, requires to reevaluate existing evaluation ap-
proaches that have driven our current progress in AI. There
is a need for end-user to be involved in the process and pro-
vide a meaningful explanation to all stakeholders in the pro-
cess. Although the effort in the field of explainable artificial
intelligence(XAI) (Gunning 2017) turned attention toward
these issues, more need to be done in the process of evalu-
ating any human facing AI systems. It has been shown that
humans tend to develop deeper trust and understanding of
the AI system is provided with the explanations within the
human accepted conceptual realm (Weitz et al. 2019). The
designers and evaluators of such AI systems and need to take
into account the need for conceptual explanation provided
for reasoning and behind each action, in order for human
stakeholders to develop a sense of when to trust the system
and when human needs to take over. Thus overcome the gap
between expectation and performance of the systems.

AI explainability involves a wide range of spectrum of re-
search. There are several stages in the AI pipeline that may
provide an explanation of why a model has a certain pre-
diction. Pre-model explainability involves a wide range of
methodologies to understand the dataset involved in devel-
oping the model. Early data exploration and insight involve
exploring the dataset and identifying key insight underly-
ing concepts that may guide the AI pipeline toward better
explainability in later stages. The next phase involves devel-
oping models with explainability in mind. Traditionally, this
meant restricting model designer to using machine learning
techniques that provide an explanation or easy to decom-
pose into simpler problems. Due to the complex nature of
the modern deep learning techniques and the sheer volume
of the data, it may not be a feasible choice. The last phase
involves interpreting results from already developed models
in an ad-hoc fashion. Because the majority of models are de-
veloped with improving incremental improvements in pop-



ular benchmarks like Imagenet, they don’t have an inherent
explainability goal, a lot of effort is spent to explain results
from these methods. Taking into account these phases in the
AI pipeline, it is critical to incorporate procedures in the AI
pipeline to provide conceptual explanations for each step in
the process.

In the example of the AI tutor system (Paudyal et al. 2019)
which is designed as a modular combination of various sub-
systems, that can be used to provide a conceptual human-
centered explanation. The explanation can be generated by
using the weights on the linear combination. In another ap-
proach, the subsystems can give independent explanations
for the components. There is no real evaluation metric that
can be used to compare these types of explanations to each
other. One such metric that could be determined might be
the final performance of students towards learning outcomes
when using each of the systems. If a large enough sample
set of students can be established, these system-wide evalu-
ations can be a proxy for evaluating subjective artifacts such
as explanations. Thus lead to a system that is human-centric
and provides feedback that end-user can relate to.

Although designing an AI pipeline with explainabil-
ity in mind might affect some performance metrics(Gun-
ning 2017), a wide adaptation of such systems in human-
interfaces applications requires us to reconsider our best
practices in AI. It needs to include the evaluation techniques
favoring evaluation in terms of explainable concepts that
take a human-centered approach in all phases of the AI
pipeline.

BP5: Iterative Evaluation on Adaptive Human
AI Interaction

A significant aspect of Human AI interaction is that human
behavior changes with continued usage of an AI system. Hu-
mans are adaptive in nature and they tend to naturally mod-
ify their behavior to either assist the AI in performing col-
laborative tasks or to hinder to it to test the capacities. For
instance, while using personal assistants, people will mod-
ify their natural patterns of conversation to facilitate correct
transcription. On the other hand sometimes people will in-
tentionally try to make the speech recognition and language
understanding task more difficult to test the limits. The eval-
uation conditions during training do not take into account for
this ‘real-world’ usage. In addition, the behavior modifica-
tions shown by humans will become even more pronounced
with time and more interaction. In the case of the AI Sign
Language Tutor system (Paudyal et al. 2019), humans might
adapt to the specific ways in which the AI does the com-
parisons to boost their ability to ‘pass’ the practice in the
first time. This might lead to suboptimal learning outcomes.
Conversely, humans may also begin to behave in a way that
minimizes errors in the AI due to extraneous movement and
other unrelated factors. These circumstances cannot be cap-
tured by using training datasets that do not take into account
actual human interactions. The final evaluation of the AI
sign tutor was done in a cross-sectional study with 26 partic-
ipants. The evaluation also included some recall and execu-
tion tests after a learning session. While this study captures

an important metric which is ‘progress toward the learning
outcome’, the long term consequences of how humans adapt
to using the AI is not captured.

In another example of the AP system, the issue of phan-
tom carbs can be attributed to the adaptive nature of hu-
man interaction. According to one of the reviews of the
Medtronic 670G system, through continued usage the user
realized that the AP device was conservative and more
insulin should be infused to manage postprandial hyper-
glycemia. The AP device includes a check where the auto
mode cannot be used to infuse large amounts of insulin.
Hence, the user enters phantom carbs to get more insulin
in a way tricking the controller.

These effects occur in runtime and are nearly impossible
to evaluate during the design and testing time. However, a
good evaluation mechanism should adapt to new test cases
and perform an iterative requirements verification especially
for those related to safety of the human user.

A potential approach can involve novel test case predic-
tion from post market evaluation studies. The aim is to use
input output traces obtained from post market evaluations
to mine test cases that were not observed in the pre-market
evaluations. Then predict novel test cases that may occur
during future deployments through combinatorial analysis
of design variables. This will help to not only improve cov-
erage but also failures in these test cases can be better ex-
plained if not prevented. Techniques such as metamorphic
relation based test case prediction can be explored. A meta-
morphic relation (Segura et al. 2018; Chen et al. 2016;
Zhou et al. 2018), is a property satisfied by the input output
variables of the AI system as a result of the intended perfor-
mance. These relations are application specific and should
be derived through expert guidance. They are often a result
of underlying physical or control processes. The relations
will then be used to cluster the test cases into equivalence
classes. A representative test case can be incorporated in the
iterative evaluation experiments.

Conclusions
In this paper, we discussed the necessity for the incorpora-
tion of the effects of human interaction with AI systems in
its evaluation. We hypothesize a more human-centric evalu-
ation of AI systems can potentially reduce the gap between
expected and practically observed performances of AI sys-
tems. This includes transparency in evaluation methodology,
explicitly addressing participant bias, using robust metrics,
and providing explanations for decisions taken by the AI
system. Evaluating AI systems simplistically based only on
performance-centric evaluation metric might lead to lofty
expectations of performance or hype. However, if a thor-
ough consideration is done in selecting the evaluation cri-
teria and metric, a more robust system can be engineered.
In other words, by being explicitly aware of the limitations
imposed by the various assumptions in evaluation more re-
alistic expectations of AI systems can be established and the
shortcomings can be mitigated. We also advocate an itera-
tive evaluation methodology, where post-market evaluations
and user experiences can be incorporated in the evaluation
of the AI system.
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